音频格式与编码
- 声音是什么?
- 物理层面 :空气分子的振动 → 声压随时间变化的波。
- 模拟信号 :连续的波形,既有时间连续性,也有幅度连续性。
但计算机只能处理离散的数字,所以要“采样 + 量化”成数字信号。
- 采样与量化(数字化的第一步)
声音本质:连续的模拟信号
但计算机只能处理离散的数字,所以要“采样 + 量化”成数字信号。
声音本质:连续的模拟信号
# server.py
from mcp.server.fastmcp import FastMCP
from mcp.server.fastmcp.prompts import base
# Create an MCP server
mcp = FastMCP("Demo")
# Add an addition tool
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers"""
return a + b
# Add a dynamic greeting resource
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
"""Get a personalized greeting"""
return f"Hello, {name}!"
本文梳理了 DPO,GRPO 的主要特点、亮点以及相关资源链接。
先来回顾以下 PPO,采用 PPO 的 RLHF 会经过 reward model tuning 和 Reinforcement Learning 2 个步骤:
AUTOGEN 是一个开源平台,主要用于创建和管理自动化对话代理(agents)。这些代理可以完成多种任务,比如回答问题、执行函数,甚至与其他代理进行交互。
本文旨在介绍 Autogen 中的关键组件 Conversation Agent,并对其中的 Multi-Agent 功能实现做简单的源码分析。
本文对 Semantic Kernel 中的 Kernel,Plugin,KernelFunction,Semantic Memory,Planner,Services,reliability 等进行概念介绍。
本文基于 HuggingFace 推出的 Reinforcement Learning Course 进行了整理,旨在记录强化学习的基础知识,为理解 RLHF(Reinforcement Learning from Human Feedback)打下基础。需要强调的是,以下内容仅涵盖强化学习的基础概念及 RLHF 基础,并非全面的强化学习教程。